首页 >> 精选要闻 > 严选问答 >

arctanx定义域求解步骤

2025-11-16 04:49:14

问题描述:

arctanx定义域求解步骤,跪求好心人,帮我度过难关!

最佳答案

推荐答案

2025-11-16 04:49:14

arctanx定义域求解步骤】在数学中,反三角函数是常见的函数类型之一,其中 arctanx(反正切函数) 是一个重要的函数。了解其定义域对于正确使用该函数至关重要。本文将详细总结 arctanx 的定义域求解步骤,并以表格形式清晰展示。

一、arctanx 定义域的求解步骤

1. 理解 arctanx 的含义

arctanx 表示的是正切函数 y = tanθ 的反函数,即 θ = arctanx。它表示的是使得 tanθ = x 的角度 θ。

2. 确定原函数 tanθ 的定义域和值域

- 正切函数 y = tanθ 的定义域为所有实数,除了 θ = π/2 + kπ(k 为整数),因为此时正切函数无定义。

- 其值域为全体实数 R。

3. 考虑反函数的定义域与值域关系

- 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。

- 因此,arctanx 的定义域应为原函数 tanθ 的值域,即 全体实数 R。

4. 确认 arctanx 的实际定义域

- 综合上述分析,arctanx 的定义域为 (-∞, +∞),即所有实数。

5. 验证结果是否合理

- 对于任意实数 x,都可以找到一个角度 θ ∈ (-π/2, π/2),使得 tanθ = x。

- 因此,arctanx 在整个实数范围内都有定义。

二、总结表格

项目 内容
函数名称 arctanx(反正切函数)
原函数 y = tanθ
原函数定义域 θ ≠ π/2 + kπ(k 为整数)
原函数值域 R(全体实数)
反函数定义域 原函数值域 → R
反函数值域 原函数定义域 → (-π/2, π/2)
arctanx 的定义域 (-∞, +∞)
arctanx 的值域 (-π/2, π/2)

通过以上步骤可以清晰地理解 arctanx 的定义域来源及推导过程。掌握这些内容有助于在后续学习中更好地应用反正切函数。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章